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Abstract—For an ordered set { }kwwwW ,,, 21 = of vertices and a vertex v in a connected 
graph G, the (metric) representation of v with respect to W is the k-vector r(v/W) = (d(v, w1), d(v, 
w2), …, d(v,  wk)), where d(x, y)representsthe distance between the vertices x and y. A resolving 
set of minimum cardinality is called a minimum resolving set or abasis and the cardinality of a 
basis for G is its dimension dimG.  For the graph G1 = (V1, E1) and G2 = (V2, E2) their joinis 
denoted by G1 +G2 is the graph whose vertex set is V1∪V2 and the edge set is

{ }VVEE vuuvE 2121 ,: ∈∈=  . In this paper, we determine the metric dimension of join of 
paths, paths and cycles, path and stars, complete graphs,complete graphs and paths. 
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———————————————————— 

1. INTRODUCTION  

The metric dimension problem was first 
introduced in 1975 by Slater [9], and 
independently by Harary and Melter [7] in 
1976.  This parameter has been studied for 

PCkPK nnmnn ,,,, ,  (Petersen graph), grids, 

trees, multi-dimensional grids, Torus 
networks, graph operations etc.  Let G be a 
connected graph of order 2≥n , then 
dim(G) = n-1 if and only if G = Kn and for 

4≥n , dim (G) = n – 2 if and only if 

( ) ( )2,1,1,, ≥≥+=≥= srkKGsrKG srsr

 or ( )( )1,1 ≥∪+= srKKKG sr  [9]. And 
dim(G) = 1 if and only if G = Pn[8].  Some 
bounds for  metric dimension of join of 
graphs G and H as dim (G) + dim (H) ≤ dim 
(G + H) and max (dim (G), dim (H)) ≤ min 
{dim (G) +  H, dim (H) +  G}-1 are 
established in [3].  The concept of (minimum) 
resolving set has proved to be useful and/or 

related to a variety of fields. The concept of 
minimum metric dimension has applications 
in the field of robotics[10]. A robot is a 
mechanical device which is made to move in 
space with obstructions around. It has 
neither the concept of  direction nor that of 
visibility. But it is assumed that it can sense 
the distances to a set of landmarks. A basic 
problem in chemistry to provide 
mathematical representations for a set of 
chemical compounds in a way that gives 
distinct representation to distinct 
compounds. As described in [8], the 
structure of a chemical compound can be 
represented by a labelled graph whose 
vertex and edge labels specify the atom and 
bond types, respectively.  Other applications 
of resolving sets arise in various areas 
including coin weighing problem, drug 
discovery[8], robot navigation [11], network 
discovery and verification [13], connected 
joins in graphs[1] and strategies for the 
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mastermind game[12]. For a survey of results 
in metric dimension, we refer to Chartrand 
and Ping[5]. 

2.  PRELIMINARIES 

 A graph G = (V, E) is an ordered pair 
consisting of a nonempty set V of elements 
called vertices and a set E of unordered pairs 
of vertices called edges.  A graph is said to be 
connected if there is a path between every 
pair of vertices.  If the graph is connected, 
the distance between every two vertices a 
and b, denoted by d(a, b), is the length of a 
shortest path joining a and b.  A graph 
having no loops  or multiple edges is called a 
simple graph [6].  All the graphs considered 
in this paper are undirected, simple, finite 
and connected.  The order and size of G are 
denoted by n(or m) and k respectively.  We 
use standard terminology, the terms not 
defined here may found in [2], [4]  and [7].  

The idea of resolving sets has 
appeared in the literature previously [7].  A 
vertex ( )GVx∈  is said to resolve a pair of 

vertices { }vu,  in G if ( ) ( )xvdxud ,, ≠ . For 

an ordered subset { }kwwwW ,,, 21 =  of 

V(G) and for any vertex ,Vv ∈  the (metric) 
representation of v with respect to W is the 
k-vector which is denoted and defined as 

( ) ( ) ( ) ( )( )kwvdwvdwvdWvr ,,,,,, 21 =  and if

( ) ( )WurWvr // =  then u = v for all 

( )., GVvu ∈  A resolving set of minimum 
cardinality is called a minimum resolving 
set. A resolving set W of G is defined to be 
connected if the sub graph induced by W is a 
nontrivial connected sub graph of G. A 
resolving set W of G is said to be 
independent if no two vertices in W are 
adjacent. A minimum resolving set is usually 
called a basis for G. A resolving set W is 
called a minimal resolving set of a connected 
graph G if no proper subset of W is a 
resolving set of G.  The minimum cardinality 
of a minimal resolving set of G is called the 
metric dimension of G and is denoted by 
dimG. The metric dimension of almost all 
graphs depends upon the number of vertices 
in the graph. But for some graphs like paths, 
cycles, their metric dimensions are not  
depending on the number of vertices in the 
graphs. 

3METRIC DIMENSION OF JOIN OF 
PATHS AND PATHS WITH OTHER 
FAMILIES OF GRAPHS 

In this section we study about the resolving 
sets of join of paths, paths and cycles and 
paths and stars. The following theorem 
provides the metric dimension of join of a 
path to itself. 

Theorem.3.1. For every positive integer n, 
the metric dimension of nn PP +  is  

( )








≥
≤≤

=
=+

4if
32if3

1if1
dim

nn
n

n
PP nn (3.1)  

Proof:For 1=n , 211 PPP =+ .  Therefore

( ) 1dim 11 =+ PP . For 

.,2 422 KPPn =+= Therefore 

( ) .3dim 22 =+ PP   For 3≥n  consider 

.nn PPG +=   Vertices of G is labelled as 

in Figure-1.  

 

Here distance between any two vertices is 
less than or equal to 2.  And also 

( ) .,,2,1,1, njivvd ji =∀=′ For 

{ }321 ,,,3 vvvWn ==  form a basis for 

33 PP + . 
Claim:For nGn ≥≥ )dim(,4 .  

If we assume ( ) ,dim nG <  then we can find 
out at least one pair of vertices in V\W such 
that they have the same metric 
representation with respect to W.  Therefore 

( ) .dim nG ≥  
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From calculations we get if n is an 
odd number then 

{ }vvvvvvv nn

'

1

'

6

'

4

'

2,...3 ,...,,,,,,
1 −

 is a basis 

and if n is even then 

{ }vvvvvv nn

''

4

'

2,1,...,31
,...,,,

−
 form a 

basis for G. Therefore dim(G)=n. 

Theorem. 3.2.  For given positive integers 
m, n the metric dimension of ( )mn PP +  is  

( )













≥≥−+





≤≤
==

=+

4,1if1
2

32if2
1if1

dim

mnnm
m
nm

PP mn

 (3.2) 

Proof: Let .mn PPG += Let nvvv ,,, 21   be 

the vertices of nP  and muuu ,,, 21   be the 

vertices of .mP  

Case.1: 1== mn  

Result follows by Theorem. 3.1. 

Case.2: If 2,1 == mn  then 

( ) .321 KPP ≅+  

Therefore ( ) .2dim 21 =+ PP  

If 3,1 == mn  then vertices of 31 PP + are 
labelled as in Fig-2. 

 

 

 

 
                             V1 
 
 
 

 

 
u1                   u2             u3 

 
Figure 2 

 
Then { }21,uuW =  form a basis for G.  

Therefore ( ) 2dim 31 =+ PP . 

Case. 3: if n ≥ 1 and m ≥ 4 

For n = 1 and m ≥ 4 

Let mPPG += 1   and muuuv ,,,, 21   be 
the vertices of G as shown in Fig-3.  

 

 

 

    V 

 

 

 

 

u1          u2               u3     u4um 

Figure 3 

Then 








=




−− uuuuu mmmW

2
3311 ,...,,,,

form a basis for G. Therefore  

( ) .4,
2

dim 1 ≥



=+ mmPP m  

Similarly ( ) .4,1
2

dim 2 ≥+



=+ mmPP m  

Since  









=




−− uuuuuv mmmW

2
3311
,...,,,,1,  

form a basis for  PP m+2
, where v1 is a 

vertex of P2
. 

More generally  for n ≥1 and m ≥ 4 

( ) .4,1
2

dim ≥−+



=+ mnmPP mn  

Remark.3.3.The subgroup induced by the 
vertices of a basis for the join of two paths 
are connected or equivalently their does not 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 5, Issue 9, September-2014                                   36 
ISSN 2229-5518   

IJSER © 2014 
http://www.ijser.org 

exist an independent basis for join of two 
paths. 

Theorem.3.4. The metric dimension of join 
of two graphs is 2 if and only if it is of the 
form mPP +1  where .52 ≤≤ m  

Proof:Let  G bethe  join of two graphs with
( ) 2dim =G . The only graphs with  

dimension 2  and which do not have 
independent basis are K3, C4 and P1 + Pm 
where 2 ≤ m ≤ 5. And by remark.3.3 there 
does not exist an independent basis for join 
of two graphs.  Since K3 = (P1 + P2) is the join 
of P1 and ( ) 5,4,3,2,12 =+=⇒ mPPGP m  
are the only graphs which have dimension 2. 

Converse part is follows by Theorem. 3.2. 

Theorem.3.5. For given positive integer m 
and  n = 1, 

( )















≤≤−+















≤≤
≤≤
≤≤

=+

kmkk

m
m
m

CP m

1if1
2

1312if5
1110if4
93if3

dim 1


 

Theorem.3.6. For given positive integer m 
and  n = 2, 

( )






≥+



 −

=
=+ 4if1

2
1

3if4
dim 2 mm

m
CP m

 (3.4) 

Theorem.3.7. For a given positive integer m 
and k=0, 1, 2, … 

( )










+≤≤++

=

=+
kmkifk

m

CP m

25244
3if4

dim 3

 (3.5) 

Theorem.3.8. For a given positive integer n t
( ) .dim ,11 nKP n =+  

Proof: Let KP nG ,,11 +=  be the join of P1 

and K1,n, where V(P1) = {v} and 
{ }uuuK nnV 121,1 ,...,,)(

+
=  

Claim: W = (v, u1, u2…un-1) is a basis for G.   

Every element in V \W get a unique 
metric representation with respect to W. 
Therefore W is a resolving set for G. If we 
remove any vertex from W then it is not a 
resolving set for G. Let W′ be any subset of V 
(G)with (n-1) vertices including v, then 
among thevertices of V\W we can find out 
atleast onepair of vertices  having the same 
metricrepresentation with respect to W′. 
Therefore W′ is not a resolving set for G, then 
dim (P1+K1, n)=n. 

Theorem.3.9.  For a given positive integer n,  

( ) .
2if1
1if3

dim ,12








≥+
=

=+
nn
n

KP n

 (3.6) 

Open Problem. 3.10. For given positive 
integers m and n find the metric dimension 
of Pm + K1,n. 

4 METRIC DIMENSION OF JOIN OF TWO 
COMPLETE GRAPHS  

Theorem. 4.1.The metric dimension of join 
of K1 and Kn is ( ) .dim 1 nKK n =+  

Proof: The join 11 +=+ nn KKK  and 

.dim 1 nKn =+ Therefore .dim 1 nKK n =+  

Theorem. 4.2.  Given positive integers m 
and n,  

( ) ( ) ( ) 1dimdimdim ++=+ nmnm KKKK  

Proof: The join mnmn KKK +=+ .  
Therefore

( )
( ) ( ) 1dimdim111

1dim
++=+−+−

=−+=+

mn

mn

KKmn
mnKK

. 

Now we study about the dimension of join of 
paths and complete graph as follows. 
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Theorem.4.3. For positive integers n, m. The 
metric dimension of nm KP +  is 

( ) 1dimdimdim ++=+ nmnm KPKP  

Proof: Let  and nm uuuvvv ,,,,,,, 2121   
be the vertices of G.  We have following 
cases.  

Case. 1: 3,2 ≤≤ nm  

Follows fromTheorem 4.2. 

Case.2: 3,3 ≥≥ nm , consider the following 

graph  nm KPG +=  in          Figure-4 

Claim: Every basis of G contains two 
adjacent vertices 1, +ii vv , where .1 mi ≤≤  

Proof for claim: If possible assume that 
( )Gk dim=  and there exists a basis 

{ }121 ,,,, −= ki uuuvW   for G such that 

Wvi ∈  and ., 11 Wvv ii ∉+− Since each jv  is 

adjacent to every nkuk ,,2,1, =  there are 
3 sub cases.  

Sub Case.1: If 1=i  then Wv ∈1  and the 

metric representation of 2v  is (1, 1, …, 1) 
with respect to W and also we can find 
atleast one vertex among ju  such that its 

metric representation with respect to W  is 
(1, 1, …, 1).  Which contradicts the choice of 
W.  Therefore Wv ∈2 . 

Sub Case.2: If ni =  then Wvn ∈  and 1−nv
and at least one vertex among ju  have the 

same metric representations with respect to 
W.  We arrive at a contradiction as in case. 1. 

Sub Case.3:If ni <<1 then Wvi ∈ and 1−iv
and iv have the same metric representation 
(1, 1, …, 1) with respect to W.  Therefore 
either ii vv ,1−  or 1, +ii vv  in W. 

hence the proof for the claim is complete. 

For the case of Kn every n vertices are 
adjacent to each other and each of 

mivi ,,2,1, = . Therefore we must choose 
n – 1 vertices from ui, u2, …,un to form a 
basic.  Hence dim (G) = 2+n-1=1+(n-1) + 1 =

1dimdim ++ nm KP  

5. CONCLUSION 

In this paper, we determine the metric 
dimension of join of paths, paths and cycles, 
path and stars, complete graphs, complete 
graphs and paths. It isalso characterised that 

2)dim( 21 =+ GG  if and onlyif  G1 = P1 

and .52,2 ≤≤= mPG m  
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